Development of Intelligent Gear-Shifting Map Based on Radial Basis Function Neural Networks
نویسندگان
چکیده
Currently, most automobiles have automatic transmission systems. The gear-shifting strategy used to generate shift patterns in transmission systems plays an important role in improving the performance of vehicles. However, conventional transmission systems have a fixed type of shift map, so it may not be enough to provide an efficient gear-shifting pattern to satisfy the demands of driver. In this study, we developed an intelligent strategy to handle these problems. This approach is based on a normalized radial basis function neural network, which can generate a flexible gear-shift pattern to satisfy the demands of drivers, including comfortable travel and fuel consumption. The method was verified through simulations.
منابع مشابه
Novel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection
In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...
متن کاملOn the use of back propagation and radial basis function neural networks in surface roughness prediction
Various artificial neural networks types are examined and compared for the prediction of surface roughness in manufacturing technology. The aim of the study is to evaluate different kinds of neural networks and observe their performance and applicability on the same problem. More specifically, feed-forward artificial neural networks are trained with three different back propagation algorithms, ...
متن کاملPrediction of Red Mud Bound-Soda Losses in Bayer Process Using Neural Networks
In the Bayer process, the reaction of silica in bauxite with caustic soda causes the loss of great amount of NaOH. In this research, the bound-soda losses in Bayer process solid residue (red mud) are predicted using intelligent techniques. This method, based on the application of regression and artificial neural networks (AAN), has been used to predict red mud bound-soda losses in Iran Alumina C...
متن کاملDeveloping a Radial Basis Function Neural Networks to Predict the Working Days for Tillage Operation in Crop Production
The aim of this study was to determine the probability of working days (PWD) for tillage operation using weather data with Multiple Linear Regression (MLR) and Radial Basis Function (RBF) artificial networks. In both models, seven variables were considered as input parameters, namely minimum, average and maximum temperature, relative humidity, rainfall, wind speed, and evaporation on a daily ba...
متن کاملImpact of Structural Components of Market on the Markup Level Based on Radial Basis Neural Network and Fuzzy Logic
This paper aims to evaluate the impact of several indices of market structure including entry to barrier, economies of scale and concentration degree on 140 active industries using the digit. Accordingly, we apply three methods including cost disadvantages ratio ( ), Herfindahl–Hirschman concentration index ( ) and Comanor and Willson criterion in order to assess the economies of scale and usin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Fuzzy Logic and Intelligent Systems
دوره 13 شماره
صفحات -
تاریخ انتشار 2013